An Agent-Based Model of ants’ recruitment strategies
compared to their colony size

Abstract

Ants can make use of different strategies for food foraging. In general, small colonies conduct
individual foraging and as colonies grow in size, group recruitment and pheromone recruitment
become increasingly stronger strategies. The changing habitat due to the increasing colony size
can be an explaining factor for the change in behaviour, but recent research has shown that
exclusively the increasing number of interactions that are caused by having a larger colony can
explain this behaviour. By designing an Agent-Based Model (ABM) of foraging strategies in
an ant colony, we tried to model these interactions with different colony sizes. We show that 1)
bigger colonies rely more on pheromone recruitment, 2) a combination of different recruitment
strategies at the same time is unstable, and 3) ABM’s are a viable extension of differential
equations when trying to model non-linear interactions.
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“Fveryone says, stay away from ants. They have no lessons for us; they are crazy little instruments,
inhuman, incapable of controlling themselves, lacking manners, lacking souls. When they are massed
together, all touching, exchanging bits of information held in their jaws like memoranda, they become
a single animal. Look out for that. It is a debasement, a loss of individuality, a violation of human
nature, an unnatural act.”

-Thomas (1977)

Introduction

Ants are known for their ability to divide labour, e.g. in nest building, reproduction or foraging.
They are considered efficient in the preservation of their species, which is evident in the fact that
ants have colonised every continent on earth, except for Antarctica. With more than 12.000 different
species known today, they account for 15-20% of earth’s terrestrial animal biomass (Schultz, 2000)
and their species is estimated to be 168 million years old (Moreau et al., 2006).

Different ant species adopt a mixture of foraging strategies. In the studies of Beckers et al. (1989),
the authors studied the behaviour of over 98 ant species. They suggest a distinction between four
different types of food recruitment strategies: group recruitment, tandem recruitment, pheromone
recruitment and individual foraging.

Group recruitment happens when a group of foragers leave their nest to find food and when
they do, they can guide other ants to their food source. This is a self-reinforced process because
the follower ants can become leaders themselves for the next round of finding food. We can view
tandem recruitment as a type of group recruitment were the group of following ants is one. With
pheromone recruitment, ants create a pheromone trail from a food source to their nest. The ants
release pheromones when they find food, creating a scented path for other ants leading to the
food source. This too is a self-reinforced process, as the pheromone-following ants will too release
pheromones on their way back to the nest when they found the food.

Recruitment strategies are influenced by habitat, species type and the size of the colony.
Generally, ants rely more on pheromone recruitment as colonies grow in size (Holldobler and Wilson,
1990; Beckers et al., 1989). Planqué (2010) confirmed this in their mathematical derivations of the
stability of different recruitment strategies. In their research they propose five different equilibria,
of which four are biologically possible. Furthermore, they pose four different predictions from their
model:
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1. The use of two or more strategies is never a stable situation. Only one of them is likely to be
used consistently.

2. There is a certain minimal colony size required for all recruitment methods.

3. As colony size increases, ants should change from solitary foraging to pheromone recruitment,
probably with tandem running and group recruitment as intermediate stages.

4. Very large colonies are always expected to use scent trails.

In this research, the relationship between colony size and recruitment strategies, as described by
Beckers and Planqué, is further investigated. Planqué (2010) describes the system with differential
equations, which has the obvious limitations: it assumes that the population is a homogeneous
mixture and the terms are continuous. We overcome these limitations by reformulating the system
into an ABM with space, which allows testing their predictions.

First, the relevant theory of Planqués paper is described in ‘theoretical background’, followed
by the model description by ODD+D protocol. Finally, there will be the analysis of the results,
discussion and future work.

Theoretical background

Beckers et al. distillate four different kinds of food foraging strategies in ants: tandem foraging,
group foraging, individual foraging and chemical foraging. Foraging ants leave their nest and when
they find food they can become become recruiters for group foraging, recruiting ‘follower’ ants
of their colony and bringing them to the food source. A distinction between group and tandem
recruitment can be made, depending on whether the leader ant recruits more than one other ant.
The recruitment of pheromone trail ants depends on the level of pheromone the ant senses, with
high levels of pheromones increasing the chance(Beckers et al., 1989). Pheromone recruitment
has become well-known in the computer-sciences and has been the inspiration for the Ant Colony
Optimization algorithm.

Beckers et al. distilled these different food recruitment methods to compare them against colony
size to check their correlation. They found a correlation: the larger the colony size, the less the
ants can rely on direct communication methods like group food recruitment and the more they are
dependent on pheromone strategies.

Planqué (2010) investigates whether the viability of recruitment methods depend on the
relationship between colony size and reliability of recruitment. In their paper, they demonstrate
how one recruitment strategy compares to another when both are competing for recruits.

For these dynamics they require four ant roles; unassigned, follower, leader and pheromone.
With the first role, an ant is uncommitted to any recruitment method, also called a solitary forager.
Followers and leader take part in the same recruitment method: group recruitment. A leader recruits
uncommitted ants, hence they become followers. When a group of a leader and its followers have
success in finding food, the followers become leaders too and can recruit their own followers from
the pool of uncommitted ants. Pheromone recruitment is based on scent. When an uncommitted
ant picks up the scent of a pheromone ant, it has a chance to become a pheromone ant as well.
Ants can take up another role based on the encounters they have with other ants (see fig. 3). The
occurrences of recruitments methods can thus be described by ODEs, as shown below.

e p(t) is the number of ants laying pheromone trails

e f(t) is the number of ants in group recruitment as followers
e [(t) is the number of ants in group recruitment as leaders

o u(t) is the number of uncommitted workers

e ¢ is the per capita rate at which individual ants using pheromone trails recruit ants not
currently engaged in any recruitment

(csij-l) is the maximum per capita rate at which ants fail to keep following the trail (with
p =1 as the minimum)

° lfree:l_£


mhlees
Comment on Text
This is clearly and well stated. 


f+1

P, = (0,N — B(n))
(0,N — A)

(N +ca)? — 4ez,0)

Py | Py \ p
Figure 1: Equilibria found by Planqué et al.
e c¢4(n) is the change in numbers of follower ants

e 5 is the sum of successful and unsuccessful group recruitment

e cg is the rate at which free leaders are assumed to stop recruiting for a food source
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Model Overview

Purpose

This paper is an extension of the work of Planqué (2010). As such, our purpose is twofold. Firstly,
we investigate the same as Planqué, i.e. the effect of colony size on the balance between recruitment
methods and the four discussion points that are raised in Planqué’s paper. (Secondly, we want to
investigate whether ABM is a good method to extend differential equations, like the one on which
we base our model. That is, to research how adding space and agents affects the dynamics of the
model.

Entities, State Variables and Scales

Ants are the only agents in our model. Ants have a role, which represents their function in a
recruitment scheme. Following Planqué (2010), ants can be a follower, leader, pheromone, or
uncommitted. Apart from a particular role, ants are assigned a position and a list of followers. This
list is empty when the ant’s role is anything else than leader.

The behaviour of all agents is dependent on the probabilities of transitioning from one role in
the recruitment strategy to another one.

We have added space to our model using a 2-dimensional torus, representing a piece of land on
which ants are crawling around and looking for food. The grid points are spaces on which ants can
walk. The distance between two neighbouring cells is arbitrary.

There are no environmental (external) forces in our model. Also, time and space scales are not
relevant in our model. However, one could put the scales into perspective by noting that we are
modelling a single colony, each agent is an ant and each step represents the movement of an ant to
a surrounding position.

When group recruitment is used, follower ants are coupled to a leader. When they collectively
do not find food, there is a chance that the collective falls apart and all the ants - including the
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leader - become unassigned. When the collective does find food, the collective has a chance that all
follower ants become leaders.

Table 1: Parameter descriptions, symbols and their theoretical bounds

Parameter Symbol Bounds
Transition probability from unassigned to follower Duf [0, 1]
Transition probability from unassigned to pheromone  py, [0, 1]
Transition probability from pheromone to unassigned — pp, [0, 1]
Transition probability from follower to leader Dl [0, 1]
Transition probability from leader to unassigned Din [0, 1]
Maximum group size” g [0, 0.5]
Initial number of ants N [1, 00)
Ratio between initial [ and p® ratio [0, 1]
Grid size® size [1, o)
max number of iterations max__iters [1, c0)

%The maximum number of followers per leader. This is a ratio of the total number of ants (N * ratio)
®Tnitial u is given by int(N/2), I by round(u * ratio) and p by N —u — I
€A value of n results in an n X n grid

Process Overview and Scheduling

Time is discrete in our model. Every time the model is advanced in time, each agent is called.
Every agent does a random walk, i.e. it moves from its current position to a random adjacent
position in its Moore neighbourhood. This can result in an ant staying at the same position as
another ant. When this is the case, the ant has an encounter with only one of the other ants. It
senses the role of the other ants and takes action according to its own role and the role of the ant is
has an encounter with. Figure 2 is a flowchart of the agent’s step. It is important to note that the
model does thus not use a freeze-dried state. After a full iteration, the model can be displayed in
the visualisation.

Move to
next step a random next step

adjacent
position

encounter no encounter

identify
other ant

action based
on own role

and role
other ant

Figure 2: Flow chart of the model.

An important design choice for an ABM is the way the agents are scheduled. Executing agents



in the same order each timestep can introduce experimental artefacts. To account for that we used
a random activation scheduler. The pseudo-code of a timestep in the model can be seen below.

Algorithm 1 Role: Follower
Require: max_ iterations, agents
iterations = 0
while iterations < max_ iterations do
shuffle agents
for each agent in agents do
step agent
end for
iterations += 1
end while

Design concepts

Basic principles

The basic principle that connects this article to the work of Planqué (2010) on which we base
our research is that of recruitment methods. The central thesis is that ants adhere to a particular
method based on their encounters with other ants. Planqué (2010) used ODEs to describe the
number of ants per role. This method was adapted to ABM and space was added, in turn making
the transition from one method to another interaction-based.

The way ants move is crucial for the effects of these two additions. Our ants behave as random
walkers, another basic principle of which the properties are well researched in the field of ABM.
Whether an action will be taken (and which) depends on the interaction with other agents. This is
further explained in the interaction section.

Emergence

The key outputs of the model are the continuous metrics pfl, pu, and flu, and the labelled
equilibrium value. It is decided to design continuous output metrics, which is a requirement for
most conventional high-dimensional model representation (HDMR) methods. To measure the
effect on the dominance of recruitment methods, we use the number of ants in each of the nested
groups. We can compare dominance of two methods using subtraction. Furthermore, normalisation
allows us to compare the results of different colony sizes. As a result, the outcome variables are
continuous on the domain [—1, 1]; plus one representing a total dominance of the first category in
the subtract, minus one a dominance of the second and zero a point of balance. Continuous output
is a prerequisite of all conventional sensitivity analysis methods.
The metrics are defined as such:
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Where p is the number of ants using pheromones, [ the number of leaders, f the number of followers,
u the number of unassigned ants, and total the total number of ants. These metrics are bounded
by the domain [-1, 1], where the size represents the dominance of one method versus the other and
the sign which method dominates.

The different equilibria are defined (as defined in Planqué (2010)) as such:

e P; = only unassigned foragers

e P, = only group recruitment (+ unassigned) and no pheromone trail ants



e P; = only pheromone trail ants (+ unassigned) and no group recruitment
e P5 = both group recruitment and pheromone trail ants (+ unassigned)

Equilibrium Py is deemed invalid since it has no biological meaning.
We assume an equilibrium to be stable when the model is in that state after 500 steps.

Adaptation

All changes in the agent rely on interactions with other agents. The environment itself has no
influence on the behaviour or attributes of agents. There are no adaptive traits.

Objectives

1

Individuals exhibit no adapting (intelligent) behaviour', are purely reactive and therefore do not

have objectives or intentions.

Sensing

An agent observes its interaction space and senses both the role of the ant it encounters (if any)
and its own role.

Interaction

Interaction between agents only takes place if they are at the same position. Each ant that arrives
on a new position has an encounter with a random other ant on this new position. Note that the
choice of a particular ant does not affect the choice of the other ants. The active ant senses the role
of the other ant. The action that follows depends on both the role of the active ant and the one
with which it has an encounter. The roles and their actions are defined below:

e u: Unassigned. Has no current role. When meeting a leader, has a chance to become a
follower of that leader. When meeting a pheromone ant, has a chance to become a pheromone
ant.

o f: Follower. Has no special actions.

e [: Leader. Leads a group of followers. When finding one of its own followers, it will have
a chance to change all followers into leaders. When finding anyone else, it has a chance to
change all followers and itself into unassigned.

¢ p: Pheromone. Pheromone only has a chance to stop being a pheromone when meeting
anyone but another pheromone.

Figure 3 shows the possible transitions given a certain role. For each of the six possibilities, there is
a chance parameter. These chance parameters, combined with the grid size, the initial number of
ants, and the group size, are the total set of parameters of our model.

Figure 3: Possibilities in strategy change, with p=pheromone, u=unassigned, f=follower, [=leader

Stochasticity

Ants start their actions by randomly selecting a cell in its Moore neighbourhood, and moving there.
When there is at least one other ant, it randomly selects one of those and interacts with it, with a
certain chance defined in the parameters.

1 Consequently, we have not created subsections on learning and prediction.



Collectives

Aggregates are defined as the complete collection of ants with the same role. When group recruitment
is used, follower ants are coupled to a leader. When the leader is unsuccessful, there is a chance
that the collective falls apart and all the ants - including the leader - become unassigned. When
the leader is successful, the collective has a chance that all follower ants become leaders. These
collectives are defined by us and non-emergent.

Observation

Every timestep the total number of ants per role is stored.

Details

For the complete codebase see: https://github.com/WouterVrielink /recruitment_ strategies_ ABM.

Initialization

The model is initialised as a two-dimensional square grid (size x size) in which N ants are
placed at random locations. Half of the ants start unassigned, whereas the other half is either a
follower /pheromone ant, depending on variable ratio.

Input data

The model does not require external inputs and does not mimic processes that change over time.

Submodels

Each agent’s behaviour (step()) can be divided into two parts; move(), and role_actions().
The move () function selects a random location with uniform distribution in the agent’s Moore
neighbourhood. The role_actions() function depends on the present role of the agent.

Algorithm 2 Role: Unassigned
Require: Agent X, max_ followers
if X has neighbours then
Get random neighbour Y
Get interaction probability P with Y
if random() < P then
if Y .role is Leader and Y .followers < max_followers then
Add X to Y .followers
X .role = Follower
else if Y.role is Pheromone then
X.role = Pheromone
end if
end if
end if

Algorithm 3 Role: Follower
Require: Agent X
pass

Parameter Sweep

Before any analysis can be performed, reasonable parameter values have to be selected. Since no
rational estimations can be made about transition probabilities, the starting ratio between [ and



Algorithm 4 Role: Leader

Require: Agent X
if X has neighbours then
Get random neighbour Y
Get interaction probability P with Y
if random() < P then
newRole
if Y in X .followers then
newRole = Leader
else
newRole = Unassigned
end if
for each Z in X .followers do
Z .role = newRole
end for
X followers = []
X.role = newRole
end if
end if

Algorithm 5 Role: Pheromone

Require: Agent X
if X has neighbours then
Get random neighbour Y
Get interaction probability P with Y

if random() < P and Y .role is not Pheromone then

X.role = Unassigned
end if
end if




p, and maximum group size g, we decided to take the whole range between 0-1. A large range of
initial number of ants (10-500) and size of the system (3-20) was selected.

Consequently, these parameter ranges were Saltelli-sampled totalling 40.000 different parameter
combinations. Each parameter combination was then run for with the total number of iterations
(maz__iters) fixed on 500 (Archer et al., 1997).

Results

Linear Discriminant Analysis

For analysis of labelled output with continuous inputs, one can use Linear Discriminant Analysis
(LDA). LDA is a method that finds the linear combination of input parameters that maximises the
separation of the labelled output.

Figure 4 shows this projection on a 2D plane for the parameter sweep. A surprisingly high ratio
of the variance between the classes (0.998) can be explained by projecting the 9-dimensional data
onto a 2D plane. Furthermore, since we have the projection matrix from 9D to 2D, we can predict
the relative importance of variables from their values, see table 2.

Table 2: Projection matrix from the 8D space onto 2D space.
Puf Ppu Pup Pri Piu g ratio | N size
z | 0.10 | 4.25 | -3.56 | -0.03 | -0.50 | 0.02 | 0.59 | -0.00004 | -0.005
y | -0.87 ] 0.19 | -0.34 | -0.65 | 3.60 | -0.35 | -0.25 | 0.0005 -0.04

Even though not all parameter ranges are the same, which makes it impossible to directly
compare values, one of the most striking properties of this matrix is that the number of ants and
the size of the environment seem to have little to no effect in predicting the difference between the
classes.

Although the projection seems to be successful, the distribution of the different classes is a bit
off. The majority of the parameter combinations seems to result in a predictable final situation. A
more interesting region is highlighted by a black square in figure 4. We can get a (lossy) estimation
of the values in this square by multiplying its coordinates by the pseudo-inverse of the projection
matrix, see table 2. This then gives us a prediction of the values within this space. Since these
values should not be larger or smaller than the original bounds, we limit them to their original
bounds. Furthermore, we have seen that IV and size seem to have little effect on the final situation,
so we fix them on 40 and 11 respectively, see table 3. A new parameter sweep was performed on
these ranges which resulted in figure 5.

Table 3: Parameter bounds of the square in figure 4.
Duf Ppu Dup Dri DPlu g ratio
min | 0.55 | 0 0.41 | 0.54 | O 0.27 | 0.45
max | 0.68 | 0.62 | 0.97 | 0.64 | 0.31 | 0.32 | 0.57

Sobol Analysis

Figure 6 shows the first and total order explained variance for metric ps;. We generally see a lower
first order effect of the parameters for the subset generated from LDA than for the whole parameter
range, but we see a higher total order effect for the same parameter subset. We see a clear effect of
Diw, Pup, and pp,, for both higher and lower order effects. Throughout all three metrics we see the
same general pattern for N, size, ratio and g: they seem to have relatively little influence.

The second order interaction effects are insignificant for all combinations, except the interactions
between pp, and py,, and py, and pp,. For the complete parameter range and all three metrics
the interaction between p,, and p,, was significant, and for the bounded parameter range and all
three metrics the second order interaction between p,,, and p;, was significant.
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Figure 4: Projection of the original data onto a 2D space, with 40.000 samples P;:
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Projection of bounded parameter sweep onto a 2D space (40000 samples)

Figure 5: Projection of a bounded parameter sweep onto a 2D space with 40.000 samples.
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Figure 7: OFAT analysis that shows the effect of N and g on pfl
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Figure 8: OFAT analysis showing the occurrences of each recruitment strategy for low values of N

One Factor at a Time

The one factor at a time (OFAT) analysis is an easy visual method to see the effects of a single
parameter. Starting parameters (see table 4) were selected from the bottom-left corner of figure 5,
which is dominated by Ps. This guarantees that P5 is present in the new subset.

Table 4: Standard parameters of OFAT analysis.

Duf Ppu Dup Drfi Plu g ratio | IV size
0.56 | 0.49 | 0.52 | 0.54 | 0.25 | 0.27 | 0.52 | 100 | 12

We can see in figure 9 that a low [u value results in a high flu value. As pj, increases, the
number of unassigned ants increases and flu decreases. Once py, gets too high, group recruitment
loses its competitiveness and pheromone recruitment becomes dominant.

In figure 7 we see that as N increases, pheromone recruitment becomes dominant over group
recruitment, as predicted by Planqué.

Increasing the size of the colony has a negative effect on metric pfl, as can be seen in figure 7.
This is most likely caused by the effect that increasing the size, but keeping N static, results in a
decrease in agent density, which makes pheromone recruitment less competitive.

Growing populations

Natural ant colonies are not static, and the number of ants is expected to grow over time in normal
conditions. Furthermore, Planqué (2010) predicts that as colony size increases, ants should change
from solitary foraging to pheromone recruitment. For these reasons we implemented a version in
which every timestep one unassigned ant gets added to the system on a random location (figure 10).

The initial parameters chosen for the model resemble the OFAT parameters, but were slightly
tuned such that in around half of the runs, the colony ends up with group recruitment and the
other half with pheromone recruitment. A clear distinction between the two options is visible.
Colonies that grow over time, tend to rely more on pheromone recruitment at the expense of group
recruitment, but this does not seem to have a real effect on the relative use of unassigned (or
solitary) ants, since the changes between the two groups are antagonistic.
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Figure 9: OFAT analysis showing the occurrence of the group recruitment strategy for different
values of lu
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Figure 10: 100 replicates were used for both steady and grown. The confidence interval is 95%.
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Discussion

The aim of this article was to investigate the four predictions raised by Planqué (2010), with an
emphasis on the effect of colony size on the dominant recruitment strategy.

Their first prediction considers the co-existence of recruitment strategies and claims that two
or more strategies can never lead to a stable situation. Stochastic/finite-size ABMs, like this one,
generally have difficulty with reaching stable equilibria, with the positive-feedback of the strategies
making it even less stable. One way to define stability in these models is the time it takes until it
reaches its ’end-state’. Models that still remain in state Ps after 500 iterations, can be considered
stable, and increasing the total number of iterations can only make the possibility of ending up in
Ps5 lower.

The second prediction concerns the minimal colony size required for recruitment strategies. Our
OFAT analysis could not confirm this, since running it with minimal ant numbers showed the use
of all the three different strategies. The lowest initial NV for which the outcome is not restricted is 4.
Then we start with 2 uncommitted, 1 leader and 1 pheromone ant. Figure 8 shows that even for
this number all recruitment methods occur. When we start with only one ant, there will be no
change as all transmissions are interaction-based.

The third prediction is that as the colony size increases, the model tends to shift from a state
dominated by solitary foraging - possibly with group recruitment as intermediate phase - to a
pheromone dominated state. The effect of adding ants continuously to the system indeed generally
results into a more pheromone dominated state. However, the cause of this effect is most likely due
to the bigger population, as confirmed by the OFAT analysis, and not by the effect of growth.

The fourth prediction follows from the third: large colonies are expected to always use scent
trails, which is confirmed by the OFAT analysis. Remember it becomes less probable for a leader to
meet one of its own followers as the number of ants increases. This is not the case for pheromone ants,
as they do not have groups, and can only become unassigned when meeting other -non-pheromone—
ants. Consequently, the pheromone strategy scales better than the follower-leader strategy, as the
number of ants increases.

The majority of data interpretation, and understanding, still relies heavily on visual cues.
When sampling from a multivariate distribution, it can therefore be insightful to first reduce
the dimensionality of the data to discover regions of interest. One important thing to notice is
that as the number of parameters increases, the number of samples required grows exponentially.
Interpreting the LDA, however, is tricky, and prone to misunderstanding. As LDA was used to find
bounds over a wide range of parameters, the interpretation of these scales is only relevant over this
wide range. Contrarily, the OFAT actually showed that the size and number of ants actually are
relevant parameters in the region they were sampled, while LDA hinted that these parameters are
relatively unimportant.

All in all, ABMs are an easy and intuitive way to model complex interactions between different
agents. ABMs can be especially useful when mathematical analysis of the problem can not be done
orisare particulary hard, as the case with some of the predictions of Planqué (2010). However, both
the analysis as the interpretation of ABMs remains rather challenging. Ideally both ABMs and
mathematical analysis are used for a complete understanding of a problem.

Future work

Future work could either extend the analysis performed on our model or extend the model itself.
In the former category one could think of investigating a reverse of independent and dependent
variables, i.e. will colony size change if a certain strategy dominates? Also, one could look at
localities in the grid and if there will be segregation between regions, where certain recruitment
method are dominant.

Alternatively, future research could extend the model itself. One could think of implementing
scent trails, adding colony and food positions on the grid, change the movement behaviour of ants,
and implementation of colony splitting. Below, a more detailed recommendation of pheromone
scent implementation and empirical foundation can be found.

In our implementation of the pheromone recruitment method, ants did not interact with the
pheromone trail, but only with the pheromone laying ant. This has allowed us to stay closer to
Planqué’s ODEs, but shows less resemblance to actual ant behaviour (Vander Meer and Alonso,
1998). Ants can follow pheromones when foraging, which in turn reinforces the pheromone path.
If a pheromone path is not reinforced, the path will disappear with a certain decay rate. This
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leads to efficiently finding the shortest path to the food source, without ants having to directly
communicate about a short path length. For this type of extensions, ABMs are especially suitable.

Earlier work

Earlier work involved the modelling of a biological interpretation of the Ant-Colony Optimization
problem. See the GitHub link for the code and a nice video of how it works:
https://github.com/Wouter Vrielink/MC-ACO.

Notebooks

1. TPython notebook example on how to run
2. IPython notebook on LDA

3. IPython notebook on Sobol Analysis

4. TPython notebook on OFAT

5. TPyhton notebook on Growing population

MESA contributions

1. Issue #454: [Bug report] Setting iterations greater than 1 in Batchrunner has no effect.
2. Issue #455, pull request #456: [Feature Request]: Multiprocessing BatchRunner. (Pending)

3. Issue #458, pull request #459: [Bugfix] iter_neighborhood() now gives correct neighborhoods
for both von Neumann and Moore. (Accepted)
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