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Abstract—An agent-based model is developed aimed at
capturing core dynamics in classroom seating behaviour.
The model comprises the social network of the students,
an individual’s sociability, a seat’s desirability based on
its position in relation to important attributes in the
environment, and seat accessibility. Results of one-factor-
at-a-time and Sobol sensitivity analysis on the model are
discussed in detail. Model parameters are estimated by
using real data on seating behaviour gathered during
lectures. The discussion of the model is presented in terms
of several simulation experiments.

I. INTRODUCTION

SUPPORT has been found for the assertion that
auditorium seating and equivalent social processes

are not random, but guided by both strategic reasoning
and individual preferences [1]. In this report an agent-
based model (ABM) for classroom seating behaviour is
developed. A generic framework, which to our knowl-
edge is completely new, is built. It enables incorporation
of individual preferences and general seating behaviour
tendencies as well as an underlying social network. The
proposed ABM is conceptually based on Schelling’s
famous segregation model, which has been successfully
applied and adjusted to the low-cost setting of seating
decisions in classrooms [1]. However, existing models
omit the fact that individuals are connected by diverse
social ties. We expect the introduction of a friendship
network to have an impact on final seating arrangements
as it is generally considered desirable to be around
friends.

The model description follows the ODD (Overview,
Design concepts, Details) protocol [2]. The model is
fitted to (a limited amount of) real data gathered from
lectures at the University of Amsterdam in order to
accurately develop and verify the framework. Finally,
model simulations are analysed and discussed in detail.

II. MODEL DESCRIPTION

A. Purpose

The first objective of this project is to provide a
generic framework that describes classroom seating be-

haviour and other equivalent social processes that are
driven by aggregate social choice. It should be easy to
elaborate on the proposed model and tweak parameter
settings such that they better fit observations.

Secondly, the model may provide insight into the
process of seat selection; what kind of strategic reasoning
is applied, and what individual preferences are impor-
tant? The focus is on generating certain characteristic
phenomena and core dynamics. More specifically, it
is not the goal to reconstruct any particular seating
arrangement in detail.

Lastly, the model may serve as an additional tool in
classroom design. Different design concepts can be sim-
ulated and tested, with an aim of maximizing satisfaction
of students.

B. Entities, state variables, and scales

The first important entity is the environment: the
classroom. The environment is characterized by a (non-
toroidal) grid, which is static. Positions in this grid
are labelled with coordinates x = 1, ..., X (indicating
columns) and y = 1, ..., Y (indicating rows). Each
position ~x = (x, y) corresponds to either a seat or part
of an aisle – or, depending on the desired complexity of
the room, the positions can also be labelled as pillars,
doors, windows, computer desks, etc. This, however, is
not necessary in the model which is presently developed.

Secondly, seats are located at a number of positions
on the grid. Aisles separate the seating into blocks and
enable access to the seating. Accessibility is an important
component to the model, as limited access to available
seats will hinder the students’ prospective seat choice.

A seat is either empty or taken. Initially all seats are
empty; if an agent chooses to sit at position ~xi then the
corresponding seat is taken.

Seats have an attribute called ‘position utility’ p(~x),
which takes values from the continuous closed interval
[0, 1] where zero indicates an unattractive position and
one indicates desirable. This attribute is a function of the
seat’s location in the room, since factors such as door
vicinity and lecturer’s position are expected to affect the
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‘value’ of a seat. The greater the desirability of a seat, the
larger the probability someone will choose to sit there.

Finally, the agents/individuals. The agents pick a seat
based on the positional desirability and accessibility of
all available seats together with the personal preference,
which includes their sociability and social network. An
agent’s ‘sociability’ trait is a measure for how likely they
are to sit next to people they do not know. This can take
any value from the closed interval [−1, 1], where −1
indicates aversion towards sitting next to others, zero
indicates indifference and one indicates a preference.
Next, the social network is represented as a connectivity
matrix that characterizes the friendship for all pairs of
agents.

Further agent attributes may include (for instance)
eyesight, which is likely to add a personal preference to
sitting at the front. Additional attributes like these require
corresponding attributes of seats. Currently, however,
this is not modelled, but additional data may provide
sufficient basis for adding these kind of factors to the
model.

The temporal scale is simply defined as a sequence
of decision-making events. In general, classrooms are
filled within 15 minutes, however we do not consider
time (hours, minutes, etc) in this model.

C. Process overview and scheduling

The scheduling for every agent is depicted in Algo-
rithm 1. First, the environment and social parameters are
initialized. Agents then enter the classroom one at the
time and pick a seat based on which seat fits their desires
best. After the first agent has picked his/her seat, the
environment is updated. Only then the next agent enters
the room, picks a seat, and so on. Thus, the number of
iterations is the same as the number of agents seated in
the classroom. There is no need to assume an arrival rate,
since time is modelled as a series of discrete events, and
not in a continuous manner.

Algorithm 1 Pseudo-code for scheduling
init classroom
init social network
init sociability
while true do

agent = create agent(social network, sociability)
utility = calculate utility seats(classroom, agent)
seat = choose seat(classroom, utility)
classroom = sit(agent, seat)

end while

D. Design Concepts

1) Basic Principles: The model is a discrete choice
model; the agents are presented with a choice set of
discrete options (all available seats). The choices are
mutually exclusive (one cannot occupy several seats at
once), the choice set is exhaustive (it is inherent to
the model that you pick a seat in the room) and the
number of alternatives is finite (the classroom has finite
dimensions). In picking their seat, the agents determine
a utility corresponding to each seat and then choose
the one with highest utility. Hence, utility theory is
applicable [3]. However, for simplicity error terms are
discarded.

2) Emergence: The interplay of the different utility
components yields complex seating patterns emerging
from individual characteristics and preferences. With
the underlying social network we expect a tendency
of friends being clumped together. Similarly, by adding
sociability to the model it is to be assumed that sociable
people will seek each other’s company while socially
anxious people will try to avoid others. Hence, a clus-
tering of friends or sociable students and a spread of
socially anxious people is expected to emerge in final
seating arrangements.

Furthermore, the preferred seat or seats of the class-
room will attract more students in the early stages of the
run. Thus, depending on the location of these seats, we
will see clustering around this preferable section.

Finally, limited accessibility to seats in the centre of
a block is expected to yield the frequently observed
phenomenon of accumulation of taken seats close to the
aisles which in turn inhibits further filling of central seats
at later stages of the seating process.

3) Objectives: Agents try to find the seat with highest
utility, they do this at the time they come into the
classroom. The exact utility function which they try
to maximize will be discussed in section II-G. It is
important to note that their utility may still change after
they have chosen a seat due to seating behaviour of other
agents, but in the current model the agents cannot change
their seat once chosen.

4) Prediction: The agents do not consider seating
choices of future agents. For example, social agents will
not favour rows with empty seats even if their friends
will join later.

5) Sensing: It is assumed that when agents enter the
classroom they have full knowledge of their environ-
ment; they know exactly which seats are taken and who
is sitting in which seat.

6) Interaction: There is no communication between
agents and the only interaction is indirect. Agents will
change the expected utility of a seat from the perspective
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of another individual by sitting close to it, this is the only
way in which agents interact.

7) Stochasticity: The social network and sociability
characteristics are initialized randomly based on the
collected data. Furthermore, agents are assumed to be
rational and thus always choose the seat location with
maximum utility. However, in the case of multiple,
equally attractive options, a random choice among them
is made.

8) Observation: The most important data collected
from the model simulations are the final 2D seat-
ing arrangements. These seating arrangements may re-
veal characteristic phenomena and core dynamics by
analysing and describing them by (for instance) textural
features for pattern classification. More details about
output measures are discussed in sections IV and V.

It is important to mention that in the current model
the agents do not adapt to changes in their environment
after they have selected a seat. Furthermore, agents do
not learn (despite being in a classroom); agents do not
have memory of previous visits to the same lecture room.
Prediction is also not modelled. However, it might be
worthwhile to add this to the model and allow agents to
consider whether their (best) friends are already in the
room and if not, pick a seat alone if they are likely to
show up later. Finally, there is no collective behaviour of
agents, because they are handled one at the time. Seating
behaviour of groups of individuals coming in together is
another interesting possible elaboration on the current
model.

E. Initialization

At initialization an empty classroom with a specified
design (see section II-F) is created. All seats are available
and differ only in their inherent positional utility.

Inspired by [4], the social network is generated by
a custom algorithm which grows a random graph itera-
tively based on a given degree sequence. It determines
the number of friends each student has. For sake of
comparability, we generate the data-based sequence only
once per class size. Then, initialization simply comprises
random permutation and subsequent construction of a fit-
ting social graph. Likewise, the pool of sociability traits
is generated by sampling from the real-data distribution.
The order in which sociability values are assigned to
agents is again obtained by random permutation.

Agents are initialized following the order of nodes
in the social network and the order of sociabilities
respectively. The next corresponding characteristics, that
have not been used yet, are assigned to the new student.

F. Input Data

The classroom design to be specified comprises the
following features: number of horizontally aligned seat-
ing blocks, number of seats per row in each block,
number of rows, positions of horizontal and vertical
aisles, and entrances. Within this project the classroom
layout is fixed to two blocks with 6 and 14 seats per
row, and 13 rows respectively. Two vertical aisles exist,
one between the blocks and one at the margin of the
larger block. This design corresponds to the classroom
used for data collection (see section III). Position utilities
are taken from 6 discrete bins ({0, 0.05, 0.2, 0.5, 0.7, 1})
with values and arrangement derived from the question-
naire as shown in Appendix A.

Both input sequences for the social network and socia-
bility are sampled randomly from the respective real-data
distribution (see Appendix A). Due to limitations during
data collection, sociability values had to be restricted
from the interval [−1, 1] to [0, 1], discarding social aver-
sion. Numbers of friends range from 0 to class size N .
The length of friendship degree sequence and sociability
sequence determines the class size of the model instance,
meaning the maximal number of students entering the
room, which can range from 1 to 260 for the considered
classroom layout.

In general model experiments, 0 is used as random
seed. For repetitive simulations this value is successively
increased by one.

G. Sub-models

Now the utility function that the agents try to maxi-
mize will be discussed in detail. Each individual i, with
i = 1, ..., N (where N is the total number of individuals,
which must be less than or equal to the total number of
available seats), assigns some utility ui(~x) to a seat at
position ~x. Next, the individual sits down on the seat
which is assigned the highest utility. The total utility U
is the sum over all individual utilities once everyone has
found a seat.

The seats’ utility an individual assigns is influenced
by the relation of the individual to the people in neigh-
bouring seats. Thus, a ‘friendship’ term depends on
the social network connections to neighbours and is
denoted f(~xi, ~xj) where ~xi is the position of the seat
the individual is evaluating and ~xj the position of other
agents’ seats. As mentioned before, the utility function
is also influenced by the sociability term si(~x) which
depends on the agent’s sociability trait λi and of course
also on the people in neighbouring seats.

Remaining terms in the utility function are the po-
sitional desirability of the seat denoted pi(~x), and an
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accessibility term denoted ai(~xi, n) which reflects how
convenient it is for an agent to reach the seat. Agent i’s
utility rating of seat ~x is a linear combination of these
four terms:

ui(~xi) = β1fi + β2si + β3pi + β4ai, (1)

in which the coefficients βj ∈ [0, 1], with
∑
βj = 1,

represent the relative importance of each component.
They are determined by fitting the model to real data.
Each utility term is scaled to values between zero and
one, resulting in a total utility with the same range,
ui ∈ [0, 1].

The friendship term: The social network of the agents is
a graph represented by a connectivity matrix C of size
N ×N . This connectivity matrix can be constructed in
several ways:

• Do I know my neighbour? In this option it is only
relevant whether the individual knows the other
people in the room. If individual i knows the person
j then this is indicated by setting Cij to one, or to
zero when they do not know each other. In this
case it is assumed friendships are mutual, resulting
in an unweighted, undirected graph with binary and
symmetric connectivity matrix C.

• Do I like my neighbour? In this option the re-
lationship between individual i and person j is
rated by some number Cij on the interval [−1, 1],
where −1 implies full aversion towards the other
individual and 1 indicates a close friendship. In this
system zero implies indifference towards the other.
A reasonable assumption is that people feel the
same way about each other, meaning the network
is undirected. In other words: person A cannot feel
differently about person B than person B feels about
person A. In this case the connectivity matrix C is
also symmetrical. This assumption need not be the
case however.

The strength of the friendship Cij introduces a bias in
choosing a seat; you want to stay away from people you
do not like (Cij is negative) and stick around people
you do like (Cij is positive). If Cij is set zero for
all relationships (for example, at the start of a new
course) then relations to other people do not influence
the decision where to sit and the seating arrangement
is random (or fully dependent on other terms in ui). In
the case everyone knows everyone else (the connectivity
matrix consists of ones only) it is expected that everyone
will group together in the classrooms, because they are
biased towards sitting with people they know.

For simplicity the base model that is analysed is of
the type ‘Do I know my neighbour?’.

Connecting with the neighbours: The value of the
friendship and sociability terms in the utility function ui
are determined by looking at the people in neighbouring
seats. One can choose to include second neighbours
or, for instance, exclude people in front or behind by
specifying the interaction strength matrix α. When only
considering direct neighbours, the matrix has size 3× 3,
when including second neighbours it has size 5 × 5,
and so on. For now, assume only nearest neighbour
interaction. The currently applied interaction strength
matrix α for nearest neighbour interaction is:

α =
1

2

0 0 0
1 0 1
0 0 0

 , (2)

where the only relevant seats are the seats directly to the
left and right of the agent, the row in front and to the
back do not matter. The friendship term fi is determined
as follows:

fi =
∑
j

αj · C(~xi, ~xj), (3)

where the sum runs over all neighbouring seats j and
C(~xi, ~xj) returns a one if the agents at positions ~xi and
~xj know each other and zero otherwise.

For the sociability term si a similar strength of in-
teraction matrix can be defined. However, at this point
there is no reason to assume it to be different from α.
The sociability term is determined as follows:

si = λi
∑
j

αj · h(~xi, ~xj), (4)

where λi is the agent’s characteristic sociability value.
Negative values imply aversion towards sitting next to
other people, zero means indifference and one indicates
desire to sit next to others. h(~xi, ~xj) is defined in the
following way:

h(~xi, ~xj) =

{
1, if seat ~xj taken and Cij = 0

0, otherwise
(5)

With this, the student’s sociability only comes into
effect for seats being occupied by students the decision-
maker does not have a social relationship to. The final
sociability component si is obtained by shifting and
scaling the value such that si ∈ [0, 1] for all possible si.

The seat position term: Some seats in a classroom are
more desirable than others. This may, of course, depend
on strictly personal preference. However, it is not un-
reasonable to expect some general tendency of people
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low-level entities explanation type scale

D classroom design (shape, seat count nseats, positions of aisles and entrances, etc.)
N class size integer [0,nseats]
β1 friendship coefficient float [0,1]
β2 sociability coefficient float [0,1]
β3 position coefficient float [0,1]
β4 accessibility coefficient float [0,1]
α interaction strengths matrix of floats

∑
αi,j = 1

λi student i’s sociability float [-1,1]
C social network connectivity matrix binary
p(~x) seat ~x’s position utility float [0,1]

high-level entities

fi(~x) friendship term of seat ~x evaluated by agent i float [0,1]
si(~x) sociability term of seat ~x evaluated by agent i float [0,1]
ai(~x) accessibility of seat ~x float [0,1]
ui(~x) total utility of seat ~x evaluated by agent i float [0,1]

TABLE I: Overview of all variables.

picking a seat in a classroom. Only modelling the general
tendency is straightforward, then each seat is assigned
some utility value which reflects the general desirability
of that seat and

pi(~xi) = a, a ∈ [0, 1]. (6)

In the model analysed, each seating block is split into
three sections, front middle and back, and a value is
assigned to each section of each block, where all seats
in a section take the same desirability. For example, the
front three rows may get a rating of zero, and the middle
section gets a rating of one, and sections to the side of
the room receive some value in between. These ratings
are estimated on observed behaviour.

Implementing unique personal preference is more
difficult. The agents will need additional characteristics
that reflect where they want to sit (close to the door,
close to the window, close to the teacher, etc.) and the
seats need corresponding characteristics to be able to
compare the persons preference to the seat. A survey
could be conducted to gather data on this. However, as
a first implementation, it seems best to only consider a
general tendency in seat desirability.

The accessibility term: Having to ask people to move to
get to a specific seat is cumbersome and often avoided.
Hence, a utility penalty to this action can be introduced.
It is reasonable to assume that n, the number of people
you must ask to move to get to a seat, has an influence
on this penalty; the more people you have to ask, the
higher the penalty. Hence, the “getting to your seat”-
penalty is some function of n and the position of the

seat you want to get to ~xi. For now it is assumed that
gi increases linearly as a function of n:

gi =

{
0, if n = 0

b · n, if n ≥ 1
(7)

The factor b need not be determined, because it can
be absorbed into coefficient β4. It is, however, needed
to estimate gi(n = 1). For simplicity, the implemented
model uses b = 1.

In order to maintain equal scales for all utility com-
ponents, this penalty is scaled by the maximal possible
number of people to ask nmax and subsequently inverted
to model a reward for seats with good accessibility. The
final accessibility term becomes:

ai = 1− gi
nmax

. (8)

It is not claimed that the framework presented above
provides a perfect description of the mechanics under-
lying classroom seating behaviour. The framework is
meant to provide a basis for describing classroom seating
and equivalent social processes. In the following sections
the unknown parameters are estimated by comparing the
framework to real data, and simulations with an exem-
plary model implementation are analysed and discussed.

III. DATA COLLECTION

To create representative attributes for the agents and
to fit the decision-making process to real-world be-
haviour, we collected data in one specific lecture room
at Science Park, University of Amsterdam. Via an online
questionnaire, we gathered information about sociability,
number of friends, influence of people sitting next to
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you, preferred seats and more. The most relevant results
are given in Appendix A. Furthermore, we captured the
seating distribution at the moment the lecture started,
which we consider to be final seating arrangements.
These are used for parameter estimation.

Our model only considers agents entering one at a
time, hence we only collected data from lectures starting
at 9 and 11am. We did this to increase the likelihood
that students would enter the room alone instead of in
a group, which is more likely when students had not
spent time together earlier in the day. To this end we
also excluded lectures that were not the first of the day
for students in that course.

This resulted in a selection of three lectures with 8,
25 and 79 students attending.

IV. SENSITIVITY ANALYSIS

One-factor-at-a-time (OFAT) and the Sobol method
are two useful sensitivity analysis (SA) techniques ap-
plicable to ABMs [5]. Sobol analysis, being a global SA
method, samples the entire search space of parameters
and provides measures of a model’s sensitivity of the
output parameters to the input parameters while tak-
ing interaction effects between parameters into account.
OFAT on the other hand is a local SA method, where
a base parameter setting is chosen and each parameter
is varied individually while maintaining the base setting
for the remaining parameters. OFAT analysis can reveal
whether the response of a model to input parameters is
linear or non-linear and whether tipping points occur,
and it is not as expensive to run as the Sobol method.

Sensitivity of the classroom model is examined with
respect to five input parameters, namely the four coef-
ficients of the utility function, β1, β2, β3, β4, and class
size N . The coefficients βi are limited to any real value
in [0, 1] and class size is limited to an integer in [1, 260],
with 260 being the maximum amount of seats in the
classroom model.

We examine the sensitivities of a number of output
parameters of our model with respect to changes in the
input parameters defined above. A simple output measure
we can use to quantify changes is one we shall call
“happiness”, which we define as the total sum of utilities
of all students in the final state of the model, discarding
the accessibility term. This restriction to only use pi, si,
and fi is based on the assumption that once a student is
seated it is not relevant any more if the seat is easy to
reach or not. We also measure sensitivity in the output
measures of “homogeneity” and “correlation”, which
are features derived from the grey-level co-occurrence
matrix (GLCM) [6], [7]; and in “RL non-uniformity”
and “RL long-run-emphasis” which are features derived

(a) The effect of varying β1 on happiness.

(b) The effect of varying β2 on happiness.

(c) The effect of varying β4 on long-run-emphasis.

Fig. 1: OFAT analysis showing the effect on “happiness”
of varying the coefficients β1 and β2, and the effect of
varying β4 on the run-length based measure, long-run-
emphasis. The horizontal axes show the input parameter
value and the vertical axes show the happiness measure.
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(a) First order indices for the happiness measure.

(b) Total order indices for the happiness measure.

(c) Total order indices for the happiness measure,
including class size N .

Fig. 2: The first-order and total-order indices of the
coefficients βi to the happiness measure of the model’s
final state, with class size fixed at 130. Also the total-
order sensitivity indices with class size N included as a
parameter. The horizontal bars show the 95% confidence
intervals.

from the vector of run-lengths [8], meaning the counts of
consecutively filled seats in a row, determined for all pos-
sible cluster lengths respectively. These four measures
are higher-order image statistics which are commonly
used in texture classification. For our purposes, they
seem to be appropriate measures for capturing qualitative
changes in emerging seating patterns. Definitions can be
found in Appendix B.

For OFAT, the coefficients βi are assigned a base
setting of 0.25, respectively, and class size N is assigned
a base setting of 130, half of the classroom’s maximum
capacity. The standard behaviour of the model is to scale
the given coefficients βi such that they sum to one. How-
ever for the OFAT analysis to give us meaningful results
we require that a modification of an input parameter is
independent of the other parameters. To that end we have
turned off this scaling behaviour when running the OFAT
analysis such that we can observe the independent affect
of an input parameter on an output parameter. To apply
OFAT we take 15 equidistant samples for each of the five
parameters and for each of these samples we perform ten
replicate runs, thus performing a total of 5 ·15 ·10 = 750
runs.

As can be seen in Figures 1a and 1b, the coefficients
β1 and β2 cause an approximately linear increase in
happiness. We also note that when β3 or N , the number
of students in the classroom, is increased the happiness
measure increases linearly. These linear relationships
make obvious sense: as any one of the coefficients βi
increase, the respective component of the utility equa-
tion, fi, si or pi, contributes more greatly to the overall
happiness; as N is increased the happiness measure
increases simply due to the fact that there are more
students. The only non-linearities we witness for the
coefficients are for the initial increases in β1 and β2. It is
difficult to ascertain the exact cause for these, except that
as the respective coefficient, β1 or β2, moves from having
no influence at value 0, to a positive value, it is causing
students to pick seats that are somehow resulting in lower
values from the remaining components of the utility
equation. We surmise that the most likely case for this is
that, as the friendship fi or sociability si components of
the utility equation carry more weight, students choose
seats closer to other students, and this is causing the
accessibility to the preferred seats of the students coming
in later to drop below the threshold they will consider
to get to that seat. In the case of the coefficient β4, we
observe in Figure 1c how as the accessibility of a seat
becomes more important when choosing a seat, that the
long-run-emphasis (which is loosely-speaking a measure
of the length of students sitting in a row) decreases. We
also note the tipping point at approximately β4 = 0.1
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which is when students seriously start considering sitting
in more accessible seats.

For the Sobol analysis we take the standard approach
of sampling as many points as possible in the parameter
space in order to accurately estimate sensitivity measures
[12], to this end we use Saltelli sampling to sample
24000 points from the parameter space, performing a
single run of the model per sample. For the Sobol analy-
sis since we are taking into account interactions between
parameters we consider the model in its standard form
where the inputs βi are scaled at runtime. In Figures 2a
and 2b we see the results of a Sobol analysis considering
only the four coefficients βi as parameters. In these plots
we see that the model’s happiness measure in its final
state is considerably more sensitive to changes in β4
and β3, than in β1 or β2. Overall β3, the positional
factor has greatest effect on the system, and β2 the
social factor has almost no effect on the model. We
also note the slight jump in first-order to total-order
indices for each parameter, indicating there are some
higher-order interactions between parameters but these
are overshadowed by the first-order effects. We also
include the total-order indices from a Sobol analysis
where class size N is also included as a parameter
(Figure 2c), this shows how the happiness measure of
the model in its final state is much more sensitive to N
than to any of the coefficients βi.

V. PARAMETER ESTIMATION

The four utility coefficients βi are determined by
fitting the model to the collected data. On the one
hand, this is a required step to find realistic values
for these parameters, which can then be applied in
further experiments. On the other hand, the procedure of
matching model output and real-world observations is a
form of replicative model validation. All simulations are
performed within the experimental frame that we faced
during data collection, including classroom layout, so-
ciability distribution, and friendship degree distribution.
Thereby, the model behaviour is validated by evaluating
the similarity of seating patterns, without insisting on
exact locational accordance.

The main principle we use for parameter estimation is
to generate various sets of coefficients and run repetitive
simulations for each of these sets. For each parameter set
and each of the three observed seating arrangements, 10
repetitive simulations are performed, and the respective
similarity between the model output and the observation
is computed. The objective function f to be minimized

in order to fit the model to the data can then be expressed
as the mean error over all repetitions and datasets:

f(β1, β2, β3, β4) =

3∑
d=1

nrep∑
i=1

ed,i
3 · nrep

, (9)

with nrep the number of replicative runs and ed,i the error
between model output and dataset d. For this compari-
son, two different methods are applied. In both cases a
characteristic 1-dimensional distribution is derived from
the binary seating pattern, which can then be compared
by calculating the mean-squared error between model
distribution and the target pattern distribution. The first
method is based on counting occurrence of clusters with
specific run-lengths (RL), as it is used in section IV.
The second method searches for predefined local binary
patterns (LBP) of size 3 × 3 and counts how often
each of these patterns occurs in the seating arrangement
[11]. Parameter estimation is performed independently
for these two methods.

Since the mapping from model inputs to the final
seating pattern implies non-linearities and stochasticity,
it is not possible to apply a simple gradient descent
to minimize the objective function. Instead, we use
the simultaneous perturbation stochastic approximation
(SPSA) algorithm [9], [10], which enables gradient ap-
proximation relying only on a small number of mea-
surements per iteration. Further, it is claimed to be
useful for multivariate problems and noisy objective
functions. Considering the run-time of our model, its
parameter dependencies, and the inherent randomness,
the SPSA seems to be an appropriate approach that gives
a fair trade-off between finding optimal parameters and
minimizing computational costs.

The output of the SPSA algorithm is the best per-
forming of all tested parameter sets. For statistical
confidence, we perform a series of t-tests on the sets
of repetitive mean-squared error measurements to iden-
tify and remove parameter sets that differ significantly
(p < 0.1) from the best performing set. All remaining
sets are considered successful in replicating the real-
world seating process. Taking their average for each of
the four coefficients yields the final results, which are
summarized in Table II. Table III captures some statistics
about the distribution of mean errors over the successful
parameter sets. For both methods, the small variance
in mean errors compared to their average supports the
assumption that the remaining parameter sets are all
comparably successful.

Regarding the emerging coefficients, we observe that
β2 is zero for both comparison methods and all success-
ful parameter combinations. Apparently, sociability is
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not relevant at all for the observed seating process, which
reinforces the result found during sensitivity analysis.
We hypothesize that this irrelevance arises mainly due to
missing information about social aversion. During data
collection only social indifference or tendency to sit next
to unknown people have been enquired. Supposedly, only
the introduction of social aversion is able to produce
different seating dynamics. We will address this in the
course of model experimentation (section VI).

Apart from the sociability issue, it is striking that
with the LBP-method none of the social components
fi and si plays a role for seating choices. Position
utility and accessibility are the only influential compo-
nents. However, this needs to be interpreted carefully:
Visual examination (see Fig. 3 reveals that especially
for the last lecture with 79 students the LBP-model is
able to reproduce the two main clusters, but instead
of emerging around the centre of the right block the
clusters are rather attached to the two aisles. This is
comprehensible considering the fact that accessibility is
the most important component in this model, forcing the
agents to prefer seats being easily accessible from the
aisles. Nevertheless, from the real-world arrangement we
assume this to have less impact. The model resulting
from RL-parameter-estimation yields a somewhat more
appropriate spatial distribution regarding the positioning
of clusters. However, it generates a less realistic scat-
tering around the clusters. Regarding the two smaller
lectures, it is questionable if the comparison of patterns
is of any value, since the number of agents is apparently
too small to identify characteristic behaviours.

Based on the facial evaluation together with everyday
experience, we opt for the parameter set obtained by the
RL-method, where friendship is respected.

In sum, we could verify that our model is capable of
generating diverse aggregate seating dynamics, but the
reproduction of specific characteristic patterns is limited
by the small amount of available data to fit the model to,
as well as by the output measures being used to compare
two arrangements. We observe that the currently applied
measures are able to capture general local properties of
seating patterns but they do not include global features
such as positioning of clusters in the room. To improve
results, more elaborated output measures or combina-
tions of measures working on multiple scales need to be
defined.

VI. SIMULATION EXPERIMENTS & DISCUSSION

In this report, we described an agent-based model for
classroom seating determination. The choice for a seat
is based on the agent’s sociability, friendship, preferred

comparison method β1 β2 β3 β4

RL 0.3681 0.0000 0.2490 0.3829
LBP 0.0000 0.0000 0.4606 0.5394

TABLE II: The coefficients emerging from the parameter
estimation using the two different methods ’run-lengths’ (RL)
and ’local binary patterns’ (LBP) to compare model output
with observed seating patterns. The final coefficients are
obtained by taking the mean of both methods.

comparison method avg(mean errors) var(mean errors)

RL 1.1394 2.35× 10−2

LBP 1.4376 2.56× 10−2

TABLE III: The average and variance over all mean errors
of successful parameter combinations.

seating location and accessibility of the seat. Only one
classroom is considered during this research.

In order to assess the attributes of our agents, we
collected data in a lecture room. Through this, we
obtained information on seating distribution, sociability,
friendships and preferred seats. We were unable to asses
the accessibility term due to the complexity of the
measurement. Unfortunately due to time constrictions
and the lack of usable lectures for our model, we could
not obtain a reasonable amount of data. Furthermore,
we encountered lectures with (much) less students than
expected, which gave us biased seating distributions.

Our data collection provided information about so-
cial affection to unknown people, but did not include
questions about aversion to sitting beside strangers. This
directly influenced the parameter estimation, where we

Fig. 3: Seating patterns observed during visited lectures
(left) compared to simulation results (with random seed =
123) using the coefficients emerging from the estimation
with LBP (centre) and RL (right). The rows refer to the
three different lectures included in the data collection.
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estimated the factor for sociability to be zero. The
current implementation is out of balance, because it only
increases clusters, but has no counterforce; there is little
scattering of students in the classroom, they just prefer
to sit together. The data collection could be improved by
adding the option to indicate that you do not like to sit
next to an unknown person.

However, to assess the influence of negative socia-
bility we compared two model simulations. The first
uses a uniform sociability distribution in the interval
[0,1], while the second extends the interval to [-1,1]. In
figure 4, the final seating distribution of the simulations
are depicted. When the interval [0,1] is used, we observe
a strong clustering of students in (a), while the interval
[-1,1] experiences a more scattered result in (b). Con-
sequently, this social aversion has great impact on our
model and should be included in further experimentation.

On the other hand, the social graph could be improved
on two things. Firstly, as we stated earlier, the available
data set was small and therefore probably unreliable
regarding the extracted friendship degrees (figure 6a).
Secondly, we assumed the answers to be correct, while
misinterpretation of questions and uncertainty in stu-
dent’s answers could have a major impact on the data.
We did not perform any statistics on the dataset.

To this end, we ran simulations with a scale-free [14],
a random [13] and our own data-generated social net-
work to weigh the effects of the degree distribution. The
parameters were set based on the estimation using RL.
The final result does not show significant differences,
but our customly created social network depicts more
scatter (figure 5). Furthermore, we observe a tendency
of stronger clusters of ’happy’ agents emerging from the
two artificial networks. We should note that both scale-
free and random networks are created with arbitrarily
estimated parameters. With regard to the surprisingly
small effects of the underlying friendship network, fur-
ther research should be conducted to work out the causes
and to experiment with networks having more extreme
friendship clusters.

In our model environment, agents will enter the class-
room one at a time and decide without interference of
other agents. Yet in real-life, we do not encounter this,
but see a mix of individuals and groups entering the room
and make choices while some people still decide, others
are moving and some have taken their seat. Further
modelling could consider movement, decision making
and even future friend prediction. The latter consists of
an agent’s attempt to predict whether friends will join the
agent and thus considering a seat with enough available
space next to it.

The simulations were assessed and compared via

(a) Social affection with sociability trait si ∈ [0, 1].

(b) Social affection & aversion with sociability trait
si ∈ [−1, 1].

Fig. 4: The simulation results when changing the socia-
bility term. The class size is 150 and β1, β2, β3 and β4
are {0.37, 0.5, 0.25, 0.38}, being rescaled automatically
by the model implementation. Taken seats are coloured
in green where darker shades represent higher utility. The
accessibility of available seats is represented in shades
of red.

univariate variable outputs. More sophisticated measures
of the structure and distribution may be used that could
validate our model parameters. An analysis of the time-
series nature of the room as it fills up is another
dynamic that we did not study in detail. We assumed
that the final arrangement captures this behaviour in a
meaningful way. An attempt to capture larger structural
information using entropy at various kernel sizes yielded
unsatisfactory and statistically insignificant results.

VII. CONCLUSION

In this paper, we lay the ground rules and principles
for modelling classroom seating behaviour. A simple
model is able to illuminate core dynamics of seating
distributions, yet some aspects proved to be more diffi-
cult than expected. Setting up and collecting data about
agents attributes and seating distribution, as well as
providing the justified sub-models to mimic the agents
decision making process were a major challenge of this
research.

We identified and addressed some fundamental limi-
tations of our model as we defined it to be. We outlined
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(a) Custom social network generated from the data.

(b) Social graph is based on Barabasi-Albert ran-
dom graph. The number of edges to attach from a
new node to existing nodes is 5.

(c) Social graph is based on Erdos-Renyi random
graph. The probability of edge creation is set to
0.2.

Fig. 5: The simulation results when changing the friend-
ship network. The class size is 150 and β1, β2, β3 and
β4 are {0.37, 0, 0.25, 0.38}.

areas of further analysis given a larger and richer data
set that future studies may provide.

APPENDIX A
INPUT DISTRIBUTIONS

The most relevant results from the data collection are
given in Figure 6. The distribution of friendship degrees
is used to make a social network in the simulations. So-
ciability traits for agents are drawn from the sociability
distribution. The data on preferred seat locations was
used to define and assign utility values to the bins for
position utility shown in Figure 7.

(a) Friendship degrees (b) Sociability (5 bins)

(c) Preferred seat locations

Fig. 6: The observed distributions used to generate the
inputs (a) ‘friendship degree sequence’ , (b) ‘sociability
sequence’, (c) ‘position utilities’. All distributions are de-
rived from the entire set of collected data, no differences
between the lectures are made in order to compensate the
limited amount of available data.

APPENDIX B
OUTPUT MEASURES

A. GLCM Features

We compute the GLCM P (i, j) for distance d = 1 and
angle θ = 0, meaning that only horizontally adjacent
pairs of pixels are considered. The analyzed seating
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Fig. 7: Levels of desirability of the seating sections.

distribution is binary, resulting in a 2 × 2 matrix with
i, j ∈ {0, 1}.

homogeneity =
∑
i

∑
j

P (i, j)

1 + (i− j)2
(10)

correlation =
∑
i

∑
j

P (i, j)
(i− µi)(j − µj)

σiσj
(11)

with means µi and µj , and standard deviations σi and
σj .

B. Run-Length Features

The run-length features are computed based on the
run-length vector pr, where pr(j) is the number of
consecutive horizontal runs with length j.

run-length-nonuniformity (RLN) =
1

nr

∑
j

pr(j)
2 (12)

long-run-emphasis (LRE) =
1

nr

∑
j

pr(j)j
2 (13)

APPENDIX C
MODEL REPOSITORY

Our code is available on Github: https://github.
com/WavyV/ABM RocketMan. We added an interactive
Jupyter Notebook for ease of use.
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